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Introduction 

Commercial poultry production is a primary income stream for many small family farms throughout the southeastern 
United States, especially in hilly and mountainous regions where soils have historically been low in fertility. Livestock (beef 
cattle) operations provide a supplemental income source to many poultry producers. These are complimentary enterprises 
because poultry litter contains significant quantities of essential plant nutrients and is commonly used as a surface-
applied fertilizer for perennial pastures and hay meadows. The variable nutrient composition of litter is a challenge and 
occurs because of the variety of birds reared (broilers, breeders, layers or turkeys), source and thickness of initial bedding 
material used (e.g., rice hulls, wood shavings, straw, sawdust, peanut hulls and other agricultural residues), frequency 
of cleanouts, and the management, handling and storage of the litter (Bolan et al., 2010; Ashworth et al., 2020). Litter 
management (both inside and outside the poultry house) is an increasingly important issue for Tennessee farmers, state 
and federal agencies, the poultry industry and the general public. While new and innovative methods of utilizing litter 
continue to evolve, land application remains the most sustainable option (Sharpley et al., 2009). 

For many acres of land previously considered marginal for agricultural production, poultry litter applications have greatly 
increased forage and beef outputs (Pote et al., 2003). However, the land-applied surface spreading of poultry litter has 
raised water quality concerns in some areas. For example, several studies (e.g., Giddens and Barnett, 1980; Westerman et 
al., 1983; McLeod and Hegg, 1984; Edwards and Daniel, 1993; Shreve et al., 1995) have shown that nutrients and coliforms 
can be leached from surface-applied litter by heavy rainfall and transported from the field in surface runoff. Long-term 
land application of poultry litter results in an accumulation of mineral nutrients and trace metals in soil (Daigh et al., 
2009); soil phosphorus runoff in particular has the potential to impair surface and groundwater quality (Sharpe et al., 
2004; Bolan et al., 2010; McMullen et al., 2014). Indeed, research confirms that nutrients can be leached from surface-
applied litter by heavy rainfall and transported from the field in surface runoff (Edwards and Daniel, 1993; Shreve et al., 
1995). Land application of litter in many intensive poultry production regions is being closely scrutinized regarding short- 
and long-term environmental impacts, especially as it relates to phosphorus runoff and its potential role in eutrophication, 
the enrichment of plant nutrients in surface water that results in algae blooms. In poultry-dense production regions such 
as the Eucha-Spavinaw and Illinois River Watersheds in northwest Arkansas/northeast Oklahoma, this has led to the 
implementation of stringent regulatory measures for nutrient management and land application of manure (Sharpley et 
al., 2009). In addition, the soluble phosphorus pool in poultry litter is problematic because increases in water extractable 
phosphorus (WEP) in litter increase dissolved P in runoff (Eghball et al., 2002; Vadas et al., 2004; Haggard et al., 2005). 

As a result, even though poultry litter has numerous benefits as a soil amendment when handled correctly, poultry 
growers face several challenges that occur both inside and outside of the poultry house regarding the management and 
utilization of litter. The accumulation of large amounts of waste material in localized areas, especially manure and litter, 
generated by intensive production practices is a concern for producers (Bolan et al., 2010). Poultry litter is prevalent in 
intensive poultry production regions like northwest Arkansas and Delmarva, the peninsula encompassing Delaware and 
parts of Maryland and Virginia, where soil phosphorus concentrations greatly exceed crop nutrient requirements. It is 
estimated that nearly 14 million tons of broiler litter is produced annually just from broiler production units in the United 
States (Ashworth et al., 2020). Large-scale concentration of litter may pose disposal and pollution problems unless 
environmentally and economically sustainable management practices or novel beneficial reuse technologies are developed 
(Power and Dick, 2000; Kelleher et al., 2002; Sharpley et al., 2007). 
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Utilizing Poultry Litter 

The application of poultry litter to croplands and hay and pasture fields is a traditional, long-standing and common practice that is 
shown to improve soil fertility, earthworm and microbial communities as well as soil physical and hydrological properties such as 
aggregate stability, infiltration rate and hydraulic conductivity (Adeli et al., 2009; Ashworth et al., 2018; He et al., 2019; Feng et al., 
2021). As a circular bioeconomy and the increased use and recycling of waste materials gains greater attention, land application 
of poultry litter to corn and soybeans serves as a prime example of the ultimate circular bioeconomy. In fact, most manure and 
litter produced by commercial poultry production is currently land-applied to agricultural fields as a high-quality organic fertilizer 
source, although recent novel litter-based innovative bioconversion techniques have also shown promise in establishing an 
environmentally sound circular bioeconomy as well (Cheng et al., 2022; Vishwakarma et al., 2022; Kullan et al., 2025). 

Often, more litter is produced near commercial poultry production farms than can be sustainably applied to local agricultural 
fields; therefore, finding alternative uses are vital for the sustainability of the poultry industry (Katuwal et al., 2023). Poultry litter 
fits well into the circular bioeconomy, which places emphasis on the sustainable use of biological resources through closed-loop 
systems that rely on reducing, reusing, and recycling biomass. A circular bioeconomy provides ecosystem services that promote 
sustainable production, use, conservation and regeneration of biological resources and their transformation into food, fiber, 
materials and energy within ecosystem boundaries (Tabler et al., 2025). The recent global shift toward sustainable development 
and the transition toward a circular bioeconomy is increasingly recognized as a promising pathway forward, minimizing the 
use of finite resources, encouraging the use of regenerative practices and preventing loss and waste of valuable agricultural 
resources (Jurgilevich et al., 2016; Korhonen et al., 2018; Desing et al., 2020; Muscat et al., 2021). Creating such an efficient circular 
bioeconomy is projected to reach a value of U.S. $7.7 trillion by 2030 (WBCSD, 2019). 

Several studies have shown that agricultural wastes such as poultry litter can be converted into value-added products, including 
biochar which can be used as a pathogen-free soil amendment (Cantrell et al., 2012; Novak et al., 2012; Song and Guo, 2012; 
Katuwal et al., 2022) that improves and maintains soil fertility, soil quality, water-holding capacity and increase soil carbon 
sequestration (Chan et al., 2008; Novak et al., 2009). Litter biochar also can remediate contaminates in soil and water (Lima and 
Marshall, 2005; Guo et al., 2010; Lima et al., 2015). Alternative litter utilization methods also include its use as a biomass energy 
source via combustion to recover heat and energy (Lynch et al., 2013), the generation of biogas by anaerobic digestion (Beausang 
et al., 2020; U.S. EPA, 2022) and the generation of electricity (Dagnall et al., 2000), all with lower environmental impact compared 
to land application of raw poultry litter with respect to pathogens, pollutants and emissions of volatile gases (NH3, N2O, and NOx 

gases) (Billen et al., 2015). However, including the cost of mining minerals and fossil fuel consumption in a non-sustainable mineral 
fertilization scheme may offset some of this lower environmental impact. 

Despite the increasing potential of novel bioconversion techniques, land application of poultry litter remains a useful and critical 
method to recycle essential crop nutrients including nitrogen (N), phosphorus (P) and potassium (K) back to the soil when 
managed correctly. Still, pollution and nuisance problems will occur if litter is land applied when conditions do not favor agronomic 
utilization of litter nutrients (Sharpley et al., 1998; Casey et al., 2006; Kaiser et al., 2009). In addition, overall litter production and 
nutrient content can vary greatly from farm to farm based on house size, bird harvest weight, management practices, number of 
flocks per year, litter cleanout schedule, etc. To this end, Tabler et al. (2009) estimated litter production at 2.5 lb. of litter per bird 
harvested or 1.25 tons per 1,000 birds produced for broilers. While land application remains the most desirable use for poultry 
litter, this waste must often be moved farther and farther from the source (the farm where it was produced) to be applied to 
agricultural lands that can benefit from P application (Pokhrel and Shober, 2024). As a result, litter is often transported out of the 
watershed where it initially originated to prevent local and regional overapplication of nutrients, particularly P (Figures 1, 2 and 3). 

Figures 1,2 and 3. Litter is often removed from the poultry house and transported out of the home watershed to prevent 
overapplying nutrients in intensive poultry production areas. 
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Land application of poultry litter should be sustainably managed to recycle nutrients rather than for waste disposal. Environmental 
concerns about agricultural non-point source pollution make it imperative that farmers use poultry litter in the manner most 
beneficial for the environment— both in the poultry house and on the field. Hawkins and Walker (2018) have developed a litter land 
application worksheet  to assist producers with land application management of poultry litter. Poultry litter should not be applied 
to soil beyond the limits of the growing crop’s nutrient needs. This will ensure the efficient use of manure nutrients and minimize 
nutrient leaching or runoff into surface or groundwater systems. The soils in any field scheduled for poultry litter application 
should first be tested to determine fertility level, with periodic testing every 3 to 5 years recommended to monitor the nutrient 
supplying capability of the soil. Fertilizer recommendations based on soil tests and litter nutrient analyses are the only reliable 
methods to determine the crop nutrient requirement. Therefore, regular analysis of both litter and soil should be important parts 
of the overall farm operation (Sharpley et al., 2009). In addition, Hawkins and Walker (2018) offer best management practices for 
litter land application including setbacks, timing, etc. 

Poultry litter has much potential for being recycled on agricultural land when managed correctly. Beneficial use through land application 
is based on litter’s ability to favorably alter soil properties, such as plant nutrient availability, pH, organic matter content, cation exchange 
capacity, water holding capacity and soil tilth (Bolan et al, 2010). Poultry litter contains 11 essential plant nutrients (Prasad and Stanford, 
2019) including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), 
zinc (Zn), boron (B) and iron (Fe), and it is well documented that poultry litter provides a valuable source of nutrients for crops (Kelley et 
al., 1996; Williams et al., 1999; Chan et al., 2008; Harmel et al., 2009). Poultry litter application to soils not only assists with the disposal 
issue but also enhances the physical, chemical and biological fertility of soils (Friend et al., 2006; McGrath et al., 2009). 

Hawkins et al. (2025) reported that additional broiler litter has recently become more readily available to row crop producers in 
West Tennessee (where much of the state’s soybean crop is produced) as an alternative row crop fertilizer. These researchers 
indicated that the value of litter for soybean production is maximized for fields that require both P and K to reach full yield 
potential. Previous research has indicated that fertilizing with litter will often result in taller soybean plants with more above 
ground biomass without significantly improving yield. However, improved yields will sometimes occur if litter provides mineral 
micronutrients that are deficient in the soil, and may some years be in part a result of litter providing N (Hawkins et al., 2025). 
Regular soil testing is essential, and litter should be prioritized to fields that are deficient in P and/or K. 

Optimum use of poultry litter requires knowledge of its nutrient composition not only in relation to beneficial uses but also to 
environmental implications. Environmental concerns associated with the land application of poultry litter from intensive animal 
feeding operations include leaching losses of N in sub-surface drainage and to groundwater, contamination of surface water with 
soluble and particulate P, and reduced air quality by emission of greenhouse gases and volatile organic compounds (Williams et 
al., 1999; Ribaudo et al., 2003; Harmel et al., 2004; Casey et al., 2006). Protecting the environment is a major consideration when 
developing management practices to effectively use manure by-products as a nutrient resource and soil conditioner in agricultural 
and horticultural production systems (Sims and Wolf, 1994; Moore et al., 1995; Moore, Jr. et al., 2006). 

Wet Litter Challenges 

Avoiding overapplication of poultry litter to agricultural fields and the resulting accumulation of soil P is but one challenge facing 
poultry farmers today when litter is outside the poultry house. Another perhaps even greater inside-the-house challenge is the 
proper use of management practices to maintain dry litter (less than 20 percent moisture) while the material is still in the chicken 
house. The problem of wet litter, which occurs primarily in commercial broiler houses, has been recognized for over a century. 
Dann (1923) indicated that “wet litter in the poultry house is a rather troublesome problem to most poultrymen.” Despite all our 
advances in other areas related to poultry production (nutrition, housing, ventilation, lighting, disease prevention, etc.), we have made 
surprisingly little progress in the area of wet litter, as it is still a major challenge for both growers and integrators today. In fact, it is 
an increasingly critical issue in contemporary broiler production as wet litter and associated conditions, especially footpad dermatitis, 
not only affect flock production and performance but have also developed into tangible animal welfare issues (Dunlop et al., 2016). 

Figures 4a, b, and c. Failure to adequately remove moisture from the house through proper ventilation will result in varying 
amounts of wet litter: a) semi-dry, b) moist, and c) wet. 
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Wet litter results from large amounts of water added to the house environment by the birds (through respiration and manure 
deposition), by burning fuel (propane or natural gas) to heat poultry houses, and the failure by producers to remove this water 
using ventilation in a timely manner. This water must be removed from the house by adequate ventilation to maintain dry litter. 
Failure to properly manage the ventilation program will result in wet, caked litter by the time the flock is harvested (Figure 4a, b, 
and c). However, these wet litter conditions at the end of a flock must be addressed before the next new flock arrives. Baby chicks 
cannot be started on wet, cold, caked, uneven litter material. The wet litter must either be removed from the house by decaking 

(Figure 5) before the next flock or, if windrowing the litter is an option (Figure 6), incorporating the cake into the windrow for heat 
drying (Figure 7) and then evenly spread the heat-dried litter for a few days before the new flock is placed (Figure 8a, b, and c). 

Figures 5, 6, and 7. Wet litter should be removed from the house with a decaking machine (5) or incorporated into a windrow 
inside the house (6) and allowed to heat and dry as the windrow composts (7). 

Figures 8a, b, and c. Dry, level, friable litter material must be in place to start each new flock of chicks. 

Within a broiler house, as a flock increases in age, increasing amounts of water is routinely added to the litter through manure 
deposition, spillage from drinkers, condensation, roof leaks and absorption of humidity from the air (Dunlop et al., 2015). Collett 
(2012) estimated that a flock of 20,000 birds can excrete up to 660 gallons of water per day onto the litter. Control of litter moisture 
is complex and challenging due to environmental, economic, engineering and animal husbandry constraints (Tucker and Walker, 
1992). Litter moisture influences ammonia emissions (Elliott and Collins, 1982; Liu et al., 2007; Miles et al., 2011), odors (Clarkson and 
Misselbrook, 1991; Murphy et al., 2014), dust (Roumeliotis et al., 2010) and health issues such as footpad dermatitis (Bilgili et al., 2009; 
Shepherd and Fairchild, 2010; de Jong et al., 2012). In addition, microbial populations flourish when litter moisture content is greater 
than 35-40 percent, which can lead to greater risks to bird health and food safety (Eriksson De Rezende et al., 2001; Agnew and 
Leonard, 2003; Wadud et al., 2012). Dunlop et al. (2015) indicated that when daily moisture application rates are at their greatest, it 
may be challenging to maintain litter in a dry state because evaporation rates may be insufficient to remove the required amount of 
water. In addition, conditions that result in high evaporation rates may also result in high emissions rates, odors and ammonia. 

To better understand the critical relationship between ventilation and litter moisture, consider the following litter moisture control 
basics as presented by Czarick (2021). A bird will drink approximately twice as much water as it consumes in feed on a pound-for-
pound basis throughout its life. Research has confirmed the relationship between feed and water is very consistent over the life of 
the flock. For example, a 21-day-old broiler will consume approximately ¼ pound of feed each day and will drink ½ pound (8 oz) of 
water. Water consumption is the best and most inexpensive gauge to assess feed consumption. 

To  effectively manage litter moisture, it is important to ventilate the house based on the amount of water the birds are adding to the 
house each day (which is roughly the same amount they are consuming each day). In other words, whatever amount of water the birds 
drink each day, that is the amount we must remove each day. If we fail to remove the water the birds add to the house each day, then 
over time the moisture builds up and we end up with wet litter which can lead to footpad dermatitis, increased ammonia, greater 
respiratory issues, poor flock performance, etc. Therefore, poultry producers must divide their time between managing the litter inside 
the house to provide the optimum environment for flock performance and utilizing the litter in a sustainable manner outside the house 
to protect the environment. Failure to do either or both will result in serious negative consequences. How do we know how much to 
ventilate each day to remove the water that the birds are adding to the house each day? For “typical” outside wintertime 
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conditions (let’s say 40 F and 50 percent humidity), a “general” rule of thumb is that it takes approximately 14,000 cubic feet of air to 
remove each gallon of water added to the house. So, let’s say your water meter indicates that your house of birds consumes 1,000 gallons of 
water on a given day. 

You will need to remove those 1,000 gallons of water. To do so you will need to exchange 1,000 gallons x 14,000 ft3/gallon or 
14,000,000 ft3 of air per day (or in terms of cubic feet of air per minute… 14,000,000 ft3/day/24 hours/60 minutes = 9,722 cfm). The 
University of Georgia has developed an app (Poultry411 App-Minimum Ventilation Calculator) that can be a useful tool to help growers 
determine how much to ventilate based on how much water the birds are drinking. 

Variation in Litter Nutrient Content 

Proper ventilation is perhaps the greatest challenge faced by commercial poultry producers, but it is far from the only challenge. 
Another challenging aspect of litter management is the range of variation regarding litter nutrient content. Determining 
utilization potential of litter relates to the variation of its physiochemical composition because of the use of different biomass as 
bedding materials and the variation in management, storage and handling of poultry litter (Bolan et al., 2010; Crippen et al., 2016). 

While the fertilizer value of litter is well recognized, the nutrient concentration of litter can vary, depending on a variety of factors 
(VanDevender et al., 2000), including type and amount of bedding material (wood shavings, rice hulls, sawdust, straw, etc.), litter 
type (broiler, breeder hen, or turkey litter or layer manure), number of flocks between cleanouts and the nutrients included in the 
poultry diet. Tabler and Berry (2003) followed nine flocks of broilers on the same litter at a commercial broiler farm in Arkansas 
and found N increased from 33.8 (1.7 percent) to 60.3 (3.0 percent) lbs/ton, phosphorus (as P2O5) increased from 42.5 (2.1 
percent) to 69.3 (3.5 percent) lbs/ton, and potassium (as K2O) increased from 36.6 (1.8 percent) to 58.3 (2.9 percent) lbs per ton 
on an as-is basis (Table 1) over the course of nine consecutive flocks. Litter moisture ranged from a low of 22.3 percent to a high 
of 26.0 percent. Berry (1997) reported a 4-year average N, P as P2O5, and K as K2O content of litter from an Arkansas commercial 
broiler farm cleaned out completely on an annual basis was 57.3 (2.9 percent), 64.9 (3.3 percent), and 55.9 (2.8 percent) lbs/ton, 
respectively, on an as-is basis (Table 2). Moisture content of the litter over the 4-year period ranged from 23.1 to 28.1 percent. 

In the end, if litter remains in the house for multiple flocks, the flock-to-flock variation is less critical than the variation at cleanout when the 
litter is land-applied, which may be more consistent. Always test the litter at cleanout to know what you have but expect it to be in the 2.5 to 3 
percent range by mass on an “as is” basis for N, P2O5, and K2O. This expectation agrees with Espinoza et al. (2005) who found that the average 
N:P2O5:K2O ratio in litter on an “as is” basis in Arkansas was about 3.0:3.0:2.5. Because plants need more N than P, this ratio does not supply 
nutrients according to the plant’s nutrient requirements. Therefore, it is recommended that poultry litter be applied based on the phosphorus 
needs of the crop to be grown and/or the corresponding P recommendation obtained from a soil test. Applying litter based on the crop’s 
nitrogen requirement would result in P rates well above the P-fertilizer rate required for optimum crop growth and yield (Espinoza et al., 2005). 

Keep in mind, plants primarily absorb nutrients that are in the inorganic form, regardless of their original source. Nutrients in inorganic 
fertilizers are readily available for plant uptake upon application, while the organic forms of nutrients are slowly available. We will assume 
that the majority (~90 to 100 percent) of the P and K in poultry litter is available for plant uptake during the season of application and 
that the total P and K content of litter, expressed in units of P2O5and K2O, is equivalent to equal rates of inorganic P and K fertilizers. 
However, only a small portion (<20 percent) of the total N in poultry litter is present in the inorganic form, most of the N is in the organic 
form. Organic N must be mineralized (broken down) into inorganic N before it is considered plant-available N. Mineralization of organic 
N is performed by soil microbes and is affected by temperature, soil moisture and soil pH, among other factors. Because mineralization 
is affected by environmental and manure source factors, the general rule is that between 50 percent and 60 percent of the organic N is 
mineralized the first year, ~20 percent the second year and ~10 percent the third year (Espinoza et al., 2005). 

Table 1. Litter nutrient analysis at a University of Arkansas broiler farm over a 9-flock grow-out during 1995-961,2,3 . 

1Adapted from Tabler and Berry (2003) 
2Initial bedding material was 50:50 mix of rice hulls/pine shavings/sawdust. 3Figures represent averages of four 40' x 400' houses 
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Date 
Flock 

Length 
(Days) 

Flocks on 
the same 

litter 
pH Moisture 

(%) Ash (%) 
------------lbs/ton on as-is basis-------------

N P2O5 K2O Ca 

Jun-95 41 1 7.4 33.1 19.6 33.8 42.5 36.6 36.2 

Aug-95 41 2 7.6 31.5 22.5 43.6 47.9 44.1 43.0 

Oct-95 41 3 7.6 28.7 26.2 51.8 57.7 45.6 46.1 

Dec-95 40 4 7.2 33.8 24.6 51.0 51.0 44.2 42.6 

Feb-96 45 5 6.9 36.0 24.4 55.3 52.9 48.4 43.2 

Mar-96 41 6 7.5 34.7 24.9 53.0 52.8 45.6 41.2 

May-96 42 7 7.8 27.3 24.0 62.9 58.2 52.9 47.4 

Jun-96 42 8 7.3 28.7 26.0 49.5 59.3 54.2 47.3 

Aug-96 43 9 7.8 22.3 22.6 60.3 69.3 58.3 53.5 
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Table 2. Litter production variables from four years of broiler production at a University of Arkansas farm1. 

¹Adapted from Berry (1997) 
²Weight is on as-is basis 

Malone (1992) reported an average (as-is basis) of 2.9, 3.2, and 2.0 percent for N, P as P2O5, and K as K2O, respectively, from 
several U.S. sources. Chamblee and Todd (2002) reported Mississippi broiler litter contained 2.9, 1.5, and 3.0 percent N, P 
as P2O5, and K as K2O, respectively. Patterson et al. (1998) reported broiler litter in Pennsylvania to have an average N, P as 
P2O5, and K as K2O content of 3.7, 3.1 and 2.2 percent, respectively. Sharpley et al. (2009) reported N, P as P2O5, K as K2O, 
and WEP levels of 62 (3.1 percent), 68.7 (3.4 percent), 62.4 (3.1 percent) and 1.9 lbs/ton, respectively (Table 3). 

Table 3. Broiler litter analysis on an “as is” basis over a three-year period (2005-2007) analyzed by University of Arkansas 

Agricultural Diagnostic Laboratory1 . 

¹Adapted from Sharpley et al. (2009) 

²Water extractable phosphorus. 

Espinoza et al. (2005) reported poultry litter samples analyzed by the University of Arkansas Agricultural Diagnostic Laboratory 
between 1993 and 2001 had an average N, P as P2O5, and K as K2O content of 60 (3.0 percent), 57 (2.9 percent) and 52 (2.6 
percent) lbs/ton, respectively (Table 4). The majority of these samples were broiler litter with small amounts of breeder hen and 
turkey litter. Tabler et al. (2015) reported that Mississippi broiler litter contained 47.4 (2.4 percent), 69.4 (3.5 percent), 61.4 (3.1 
percent) and 9.22 lbs/ton of N, P as P2O5, K as K2O, and WEP, respectively (Table 5). Based on the number of flocks grown on the 
same litter, Tabler et al. (2015) indicated that nutrient concentrations of N, P as P2O5, K as K2O and WEP in broiler litter tended to 
increase until approximately 15 flocks had been grown and then stabilized, regardless of how many additional flocks were grown. 

Table 4. Nutrient and moisture levels of poultry (primarily broiler with small amounts of breeder hen and turkey) litter from samples 
submitted to the University of Arkansas Agricultural Diagnostic Laboratory between 1993 and 20011. 

¹Adapted from Espinoza et al. (2005) 

Date Flk age 
(wks) 

# of 
flks pH Moisture 

(%) 
Ash 
(%) 

lbs/ton on as-is basis 

Depth (in) 
Density 
(lb/ft3) 

lb litter²/ 
lb chicken 

N P2O5 K2O Ca 

Apr-93 8 6 7.25 23.78 57.7 57.0 64.1 41.7 6.44 30.50 0.369 

Apr-94 8 5 6.87 28.13 27.20 58.1 68.0 49.1 51.0 5.13 37.09 0.466 

Apr-95 6 7 7.61 25.04 26.61 55.9 66.1 52.5 53.2 3.96 35.14 0.407 

Aug-96 6 9 7.80 23.09 23.87 57.5 68.4 58.0 54.2 4.64 41.58 0.416 

AVG: 7.38 25.01 25.89 57.3 64.9 55.9 50.0 5.04 36.08 0.415 

Sample size Minimum Maximum Average 

Moisture. % 297 13 67.2 30.8 

pH 297 5.6 9.4 8.4 

N, lb/ton 297 20.0 88.0 62.0 

P2O5 , lb/ 
ton 

297 27.5 119.1 68.7 

K2O, lb/ton 297 2.6 81.6 62.4 

WEP2, lb/ 
ton 

297 0.5 9.9 1.9 

Sample size Minimum Average 

Moisture. % 2 47 23 

N, lb/ton 22 98 60 

P2O5 , lb/ 
ton 

18 96 57 

K2O, lb/ton 23 80 52 
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Table 5. Effect of division on number of flocks of broiler litter, litter pH, litter moisture percent, N, P2O5, K2O, and water-extractable 
phosphorus (WEP)1. 

------------lbs/ton on as-is basis-------------

Division # of farms # of flocks pH Moisture % N P2O5  K2O Ca 

1 18 7.28c 7.48ab 24.46efg 44.08bc 43.13c 61.84ab 9.58bcd 

2 20 7.95c 6.67f 25.35defg 44.42bc 50.78c 61.94ab 6.59ef 

3 18 5.94c 7.61a 23.85gf 38.76c 52.53c 59.94ab 4.95f 

4 20 8.05c 7.19cd 27.23bcd 46.68b 55.23c 60.23ab 13.38a 

5 4 11.25c 7.27bc 27.11def 47.42b 73.49b 60.16ab 9.40cd 

6 10 22.40b 7.12cd 26.39cde 47.08b 77.24ab 57.37b 8.00de 

7 10 10.50c 6.84ef 28.95ab 49.46b 74.78b 59.19ab 9.52bcd 

8 16 12.87c 7.14cd 25.73def 45.52b 75.82b 66.86a 10.83bc 

9 7 34.43a 6.81ef 26.71cd 46.61b 78.65ab 57.02b 10.45bc 

10 12 12.58c 6.71f 27.92ab 49.84b 85.99ab 59.67ab 10.47bc 

11 18 25.22b 6.99de 28.37g 60.85a 89.30a 64.73ab 11.29b 

12 5 6.20c 7.10cd 30.26a 48.56b 75.78b 67.44a 6.16f 

Average 13.72 13.72 7.08 26.86 47.44 69.39 61.37 9.22 

abcdefgabcdefgMeans within a column not sharing a common subscript differ significantly (P<0.05).Means within a column not sharing a common subscript differ significantly (P<0.05). 
1Adapted from Tabler et al. (2015).1Adapted from Tabler et al. (2015). 

Inorganic forms of N (ammonium N or NH4-N and nitrate N or NO3-N) in poultry litter account for ~14 percent of the total N and are 
readily available for plant uptake or volatilization losses, depending on temperature and moisture content (Sharpley et al., 2009). 
The remaining portion of the total N (86 percent) is in an organic form and must be mineralized prior to becoming available for 
plant uptake (Sharpley et al., 2009). Phosphorus in poultry litter also exists as organic and inorganic P (Edwards and Daniel, 1992; 
Sharpley and Smith, 1995; Sharpley et al., 2004). Most of the P in litter is inorganic (~90 percent; Sharpley and Moyer, 2000), with 
the remainder in organic forms that can become plant-available upon mineralization. While most P in litter is considered available 
to crops, WEP in litter is a P pool prone to immediate loss, which has been correlated with dissolved reactive P in runoff nd 
leaching (Pote et al., 1996; Maguire and Sims, 2002; Kleinman and Sharpley, 2003) and is considered the gold standard indicator 
for P loss potential (Roswall et al., 2022). 

However, only about 6 percent of the total P is water extractable (Sharpley et al., 2009). Although, WEP is an important 
environmental parameter primarily because it represents that portion of the P pool that is available to runoff, and research has shown 
a close correlation between the WEP content of litter and total P loss in the runoff Sharpley et al., 2009). Surface runoff f P from 
agricultural soils receiving poultry litter continues to be a major source of P reaching waterways. Despite best management practices 
to guide litter applications and increased local and state regulations to address the issue, soil P levels remain elevated in many 
intensive poultry production regions such as northwestern Arkansas and the Delmarva region, leading to the creation of “legacy P” 
soils, where P losses remain above environmental thresholds (Toor et al., 2020; Lucas et al., 2021, 2022; Roswall et al., 2021; Yang et 
al., 2022), even when additional P sources are eliminated. The take home message here is to avoid legacy P soils and discontinue litter 
applications once very high soil P levels are reached, at which point no further agronomic benefit exists for additional P application 

Legacy Phosphorus 

Legacy P is phosphorus accumulated over time in any compartment of a watershed, in effect a historical cumulative result 
of prolonged over application often of P fertilizers. Legacy P applies across all scales (i.e., from fields to watersheds) and 
encompasses all anthropogenic inputs (i.e., point and nonpoint sources). Legacy P, a concept advanced by Sharpley and colleagues 
and originally applied to the persistence of anthropogenic impacts in watersheds, has since been adopted in a variety of settings 
to help guide the science and management of P (Shober et al., 2024). Throughout his career, Andrew Sharpley’s research balanced 
the P management requirements of production agriculture with the mitigation of agriculture’s water quality impacts. Sharpley 
et al. (2013) elevated the legacy P concept in a landmark paper that brought it to the forefront of science in many different fields 
including agronomy, watershed science, soil chemistry, water quality and aquatic ecology. 

The rise in popularity of the legacy P concept began after Sharpley et al. (2013) framed the ways in which anthropogenic P inputs 
accumulate, are stored, and are transported in the landscape (Figure 9). Sharpley et al. (2013) identified terrestrial legacy P pools (i.e., 
fertilizer- and manure-amended soils and sedimentary stores beyond the edge-of-field, including downslope areas and flo dplains), 
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as well as aquatic legacy P pools (e.g., P stored in sediments and biomass in wetlands, rivers, standing waters, and in groundwater). 
Both terrestrial and aquatic legacy P pools can provide a sustained source of P that is mobilized through biogeochemical 
processes and transported to receiving water bodies, where it can continue to impair water quality over timescales ranging from 
years to centuries (Jarvie et al., 2013; Sharpley et al., 2013; Haygarth et al., 2014). 

Figure 9. A graphic depiction of legacy P where past land management processes are tied to the buildup of soil P and the subsequent 
cycle of P release and storage within the soils and watershed at various spatial and temporal scales. Here, the “legacy of P” is the 
resulting lag in water quality improvements even when new P sources are eliminated. Source: Shober et al., 2024. 

Effective management of legacy P requires an understanding of how traditional conservation practices interact with legacy P 
sources. Farmers and land managers must consider the limitations and potential tradeoffs of such practices (Kleinman et al., 
2022). In addition, many past conservation practices were developed under historic climate baseline conditions. As a result, 
the modern-day extreme weather events associated with climate change can reduce the efficacy of traditional conservation 
practices, resulting in accelerated movement of legacy P in the environment (Shober et al., 2024). As a result, Shober et al. (2024) 
proposed defining legacy P as P within the environment (e.g., sediments, water bodies, soils) resulting from historic human 
activity, excluding geogenic (originating from the earth) P stores, noting the need to determine if geogenic P that is transported 
and deposited within a watershed due to past human disturbance is also legacy P. Recognizing that legacy P presents both a 
water quality “challenge” as well as a stored resource, or “opportunity,” for crop production, sustainable P stewardship strategies 
are critical to managing legacy P and maximizing co-benefits for crop production and water quality (Shober et al., 2024). Without 
sustainable P stewardship practices, the end result of overapplication of P is eutrophication, recurrent algae blooms, changing 
aquatic species resulting from poor water clarity and low oxygen concentrations. 

These sustainable P stewardship strategies are often made more challenging by poultry litter’s N:P ratio being 1:1 (or slightly higher) as 
compared to crop nutrient needs that may be 8:1 or higher (Beauchamp and Hamilton, 1970; Greenwood et al, 2008; Veneklaas et al., 
2012). Therefore, applying litter to meet crop N needs results in an overapplication of P (Sims et al., 2000). As a result, techniques to 
transform or reduce P in poultry litter are imperative to sustainably use litter in an environmentally friendly manner (Roswall et al., 2022). 

Benefits of Poultry Litter as Fertilizer 

Despite all its challenges, poultry litter offers numerous benefits as a valuable and useful organic fertilizer source. Farmers, for 
generations, have used various animal manures as fertilizer for their crops (Stevenson et al., 1926). While regarded as a waste 
product by many, farmers recognize poultry litter’s value as a natural source of essential plant nutrients for both row crop fields 
and grasslands/hay fields. Even in the case of soybean application, where applying litter can be perceived as a poor agronomic 
practice due to the ability of soybean to fix N, and because most research indicates that N applications to soybean will not 
improve economic returns, the risk is minimal when litter is applied at planting because soybean will utilize litter N early season 
instead of relying solely on N fixation (Hawkins et al., 2025). However, guessing at how much to apply is not an economically or 
environmentally sound method to determine an appropriate litter application rate for agricultural fields. 

As discussed earlier, you must have a nutrient analysis of the litter to determine nutrient application rates to apply and a soil 
test on the fields or pastures receiving the litter to determine what nutrient levels currently exist and what level of nutrients 
should be added, otherwise, you are only guessing. It is now critical to apply litter at rates that are determined by the agronomic 
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needs of the crop, which can easily be accomplished by referring to the Tennessee Poultry Litter Application Worksheet (Hawkins 
and Walker, 2018). In some cases, it may be necessary to assess the risk of P loss from the field by using the Tennessee P Risk 
Assessment tool if the site is designated and regulated as a concentrated animal feeding operation (CAFO) in Tennessee or if 
the producers are working with the Natural Resources Conservation Service (NRCS) and are required to follow the Nutrient 
Management Conservation Practice Standard (also known as the 590 Conservation Practice Standard) (Walker and Hawkins, 2016). 
Visit your local county Extension office for information and assistance with soil and litter sampling procedures. The University of 
Tennessee Soil, Plants and Pest Center Laboratory charges $15.00 for each soil sample submitted. The Mississippi State University 
Chemical Laboratory (662-325-3428), the University of Arkansas Agricultural Diagnostic Laboratory (479-575-3908) and Waypoint 
Analytical (901-213-2400) offer nutrient analysis of poultry litter samples. Each requires forms to accompany the litter samples. 
Call for current pricing schedules and information on completing the proper forms and mailing addresses. 

Fertilizer costs represent a substantial portion of input cost for crop production, accounting for approximately 30 to 40 percent 
of input costs for crops with a high N requirement like corn (Pokhrel and Shober, 2024). Poultry litter offers a local, cost-effective 
alternative to commercial fertilizers, especially in times of elevated fertilizer prices or shortages or when commodity prices 
are low. Poultry litter provides benefits in addition to the primary N-P-K macronutrient profile, providing additional secondary 
macronutrients, micronutrients and organic matter (Hawkins et al., 2025). As a result, the use of poultry litter as a fertilizer source 
can be beneficial to crop production and soil health in ways that extend beyond what commercial fertilizers can offer. 

To make the most of poultry litter’s many benefits, understanding and managing litter nutrient variability is essential to optimize 
agronomic results. There are book values available to estimate poultry litter nutrient content and application rates. However, you 
should not rely on these book values as they may not provide an accurate representation due to variation in litter nutrient values 
discussed above. Litter nutrient content is influenced by multiple management factors which underscores the importance of 
regular poultry litter analysis and soil sampling. 

Poultry litter provides the traditional macronutrients (N, P and K) needed by plants, along with other benefits including the 
addition of micronutrients, as well as increases in soil pH, water-holding capacity and organic matter content (Risse et al., 2006). 
As a result, several studies have documented that manure application can increase crop yields while decreasing surface runoff 
(up to 60 percent) and erosion (up to 65 percent) (Mueller et al., 1984; Gilley and Risse, 2000). Regular soil and litter sampling 
are necessary because there is a soil- and management-specific application rate of manure/litter, above which the addition of 
nutrients in excess of crop needs negates these benefits by increasing nutrient runoff (Edwards and Daniel, 1993; Sharpley et al., 2007). 

Summary 

Even though poultry litter provides multiple benefits as a fertilizer source, it also comes with several management challenges. 
Producers are faced with two separate but equally critical challenges: 1) keeping the litter dry inside the poultry house to maintain 
animal welfare conditions and avoid issues like high ammonia levels and footpad dermatitis concerns and 2) proper utilization of 
the litter once it is removed from the poultry house to avoid overapplication of nutrients, especially P and to prevent surface runoff 
of nutrients during heavy rainfall events which could lead to eutrophication, algae blooms and decreased surface water quality. 
Keeping litter dry while in the chicken house may be the greatest of these challenges for poultry producers. Wet litter results from 
water addition to the house and inadequate ventilation and can be a serious animal welfare issue. Once removed from the poultry 
house, proper utilization and environmental protection become the greatest challenges associated with land-applied poultry litter. 
Land application of litter as a fertilizer requires access to specialized equipment or someone who has the specialized equipment. 
Adjustments in application rates will be necessary each year based on the nutrient content of the litter and soil test results. This 
will require regular litter nutrient analysis and soil testing. Farmers should be considerate of neighbors and the environment and 
manage litter applications to reduce odors and prevent overapplication of nutrients. 

Over-application of litter can result in nutrient buildup in the soil, especially where P is concerned, and can enrich surface waters 
with nutrients that degrade both local and distant receiving waters (Hawkins and Walker, 2018). Do not apply litter to frozen, snow-
covered or saturated soils or to steep (> 20 percent) slopes. Avoid litter applications during or immediately prior to precipitation 
events capable of producing field runoff approximately ¼-inch plus rainfall). Delay litter application if precipitation is likely within 
24 hours of the planned application time period (greater than or equal to 50 percent precipitation chance based on local weather 
forecast) (Hawkins and Walker, 2018). 

Despite the challenges, when managed properly, poultry litter is a valuable asset to Tennessee farmers, offering a cost-effective 
and nutrient-rich alternative to high-priced commercial fertilizer. In addition, the benefits of land-applying poultry litter extend 
beyond the nutrient needs of the crop by positively impacting soil health, advancing sustainable agricultural practices and leading 
to a more circular bioeconomy. Poultry litter application supports sustainable crop and forage production across Tennessee by 
providing a steady supply of macro and micronutrients plus beneficial organic matter to Tennessee soils. 
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Online Resources 
University of Tennessee Extension litter land application worksheet: https://tiny.utk.edu/W796 

University of Georgia Poultry411 App-Minimum Ventilation Calculator app: play.google.com/store/apps/details?id=com.ugacaes. 
poultry411&hl=en_US 

Mississippi State University Chemical Laboratory sample submittal form: 
mscl.msstate.edu/sites/www.mscl.msstate.edu/files/inline-files/F-004%20Sample%20Submission%20Form%20%26%20 
Limitations%20Form%201.4.xlsx.pdf 

University of Arkansas Agricultural Diagnostic Laboratory manure for fertilizer value information sheet: bpb-us-e1.wpmucdn.com/ 
wordpressua.uark.edu/dist/3/599/files/2024/07/AGRI-429.pdf 

Waypoint Analytical manure sample submittal form: waypointanalytical.com/Docs/samplesubmittalforms/ 
WaypointManureInformationSheet-Tennessee.pdf 
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