Poultry litter What is *in* it for row crops?

Robert Florence

Soil, Plant & Pest Center SoilLab.Tennessee.edu

County Agent In-service Jackson, TN December 12th, 2019 **Great resources**

Dr. Shawn Hawkins w 796 Department of Biosystems Engineering and Soil Science.

Litter Land Application Management

https://extension.tennessee.edu/publications/Documents/W796.pdf

DEPARTMENT OF AGRICULTURE

2019 Certified Manure Testing Laboratories

https://www2.mda.state.mn.us/webapp/lis/manurelabs.jsp

Producer

Q) I am going to apply poultry litter, how much should I put down?

Extension agent

Q) What did its analysis come back as? and

What is the soil result? and

What crop are you going to?

Q) What did its analysis come back as?

% H20 52.4 % Solids 47.6 -on dry basis-Water Total %Mg Total %N 4.16 Extractable P mg/kg Total %S 1.20 Na,mg/kg Total %P Fe,mg/kg Total %K 3.28 Mn,mg/kg Zn,mg/kg 1.63 Total %Ca Total %C Cu, mg/kg NO3-N, mg/kg B, mg/kg NH4-N, mg/kg Al, mg/kg

University of Arkansas example report

Available nitrogen = Total N x 0.45 Almost ½ of the total N is available at spreading

Incorporation may give you a slightly higher available amount

University of Arkansas example report https://cpb-us-e1.wpmucdn.com/wordpressua.uark.edu/dist/3/599/files/2019/05/Manure-Dry-Example-report.pdf

Q) What did its analysis come back as?

University of Arkansas example report

		-lbs/ton on as-is basis-
N	39.6	Water Extractable P
P2O5	26.2	S
К2О	37.8	Na
Са	15.5	Fe
Carbon		Mn
NO3-N		Zn
NH4-N		Cu
		В

Sulfur can be 15 lbs. / ton in litter.

J. Gaskin and G. Harris. 2017

Manganese, Copper, and Zinc can be about 0.5 lbs. / ton in litter.

J. Gaskin and G. Harris. 2017

University of Arkansas example report https://cpb-us-e1.wpmucdn.com/wordpressua.uark.edu/dist/3/599/files/2019/05/Manure-Dry-Example-report.pdf

J. Gaskin and G. Harris. 2017. Poultry litter applications on pastures and hayfields. UGA Extension. Bulletin 1330. <u>https://extension.uga.edu/publications/detail.html?number=B1330&title=Poultry%20Litter%20Application%20on%20Pastures%20and%20Hayfields#:~:target</u> <u>Text=Poultry%20litter%20is%20also%20a%20source%20of%20secondary%20nutrients%20such,for%20four%20to%20five%20years.</u>

Variability

	Lbs./ ton as-is basis			
Ν	58	74	58	62
P_2O_5	64	62	30	38
K ₂ O	40	44	60	66
	Malone, 1992	Patterson <i>et al.,</i> 1998	Chamblee and Todd, 2002	Bowers <i>et al.,</i> 2002

Summary of literature review by:

Coufal *et al.* 2006. Measurement of broiler litter production rates and nutrient content using recycled litter. Poultry Science. Vol 85. Issue 3. pg. 398 to 403. <u>https://academic.oup.com/ps/article/85/3/398/1573033</u>

Sampling

Solid

Sample while loading

Take at least 5 sub-samples from multiple loads, mix well, combine to make a 1 lb sample sampling directly from a stacked or bedded pack is not recommended.

During Spreading

Spread tarps in a field (6.7 $ft^2 = 1/1000^{th}$ acre).

Combine samples from multiple locations and mix well to create one composite sample

Pictures from John Peters

Sampling

Liquids

Pit

Agitate the pit well (2 to 4 hours) before sampling Place several sub samples in a large bucket

Loading

Pictures from John Peters

Sending samples

Solids

A gallon heavy duty plastic bag filled half way, with air squeezed out.

Liquids A 1 quart <u>plastic</u> bottle (not glass)

Freeze if not taken to lab immediately

There is money in that litter....

63 pounds N / ton (assume 45% available) then 28 pounds of N / ton is available

55 pounds P_2O_5 / ton

47 pounds K₂O / ton

\$17 of N per ton

Value

\$24 of P_2O_5 per ton

\$15 of K_2O per ton

\$56 of nutrient per ton

Assuming				
Fertilizer Cost per ton				
40 - 0 - 0	\$	485		
18 - 46 -0	\$	520		
0 - 0 - 60	\$	385		

What are the soil results?

Soil test level

What are the soil results?

Soil test level

What are the soil results?

Balancing act

Poultry litter has N, P, and K...

If apply to P rate One may need supplemental N or K, depends

If soils are very high in phosphorus, Try applying to other lower P field first. Amount of litter to meet N need or crop removal may be considered.

May need to apply supplemental nutrients. If litter application did not meet the N, P, or K needs.

What crop are you going to?

This drives your nitrogen rate...

	Cron Descriptio	n	Nitrogen (Ib/ac) (N)	
			Establish	TopDress / Maintain
		AG	RONOMI	C CROPS
	Maintain=Split Applied @V6 (≈ 16" tall)	100-125 bu/ac	120	0
Corn Grain		126-150 bu/ac	50	100
(grain yield		151-175 bu/ac	60	120
moisture)		176-200 bu/ac	70	140
		201-225 bu/ac	80	160
Canola ²			30	110
Cotton			<u>60-80</u>	0
Sorghum ³	Grain		60-90	0
Small Grain ⁴			15-30	60-90
Soybeans ^₅			0	0
Supflower	Seed	1 st Crop	90-120	0
Sunnower		2 nd Crop	45-60	0
Switchgrass ⁶	Biofuel		0	0
Tobacco			150-200	0

From S. Hawkins. 2018. Litter Land Application Management. UT Extension publication W796. https://extension.tennessee.edu/publications/Documents/W796.pdf

What crop are you going to?

This drives your crop removal

(which also has variability)

Co	orn	Soybeans		
P ₂ O ₅	K ₂ O	P_2O_5	K ₂ O	
Removal range (pounds per acre)				
27	21	21	45	
66	47	53	85	

Assuming 150 bu/acre

Assuming 50 bu/acre

Information extrapolated from:

A P Mallarino *et al.* 2011. Nutrient uptake by corn and soybean, removal, and recycling with crop residue. Integrated Crop Management Conference. Iowa State University. Des Moines, Iowa.

What crop are you going to?

We can test your grain for removal rates...

Mineral test is \$20 and Includes:

Phosphorus, Potassium, Calcium, Magnesium, Sulfur, Zinc, Manganese, Iron, Boron, and Copper

Your soil, litter, and grain/silage

Questions?

Robert Florence

RobertF@utk.edu

615-835-4564